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Abstract. On-load tap-changer (OLTC) is an important part in power transformer, which is 
used to change the transformation ratio by switching contact form one winding tap to 
another without interrupting the load. It is necessary to make sure the effective running of 
OLTC. Thus, a fault recognition method for OLTC based on improved BP neural network is 
proposed in this paper, according to the working characteristicsof OLTC. The feature of this 
improved neural network is that the learning rate is variable. Experimental results on 2000 
test samples from offline AC test device have showed the effectiveness of the proposed 
fault recognition method. 

1 Introduction 

On-load tap-changer (OLTC) is a kind of device which can be operated under the excitation or load 
condition of the transformer and is used to exchange the connection position of the winding [1]. The 
OLTC consists of a switch with a transition impedance and a tap selector [2]. The OLTC is a device 
which is used to change the number of turns of the first or two coils to change the effective number of 
turns in the transformer load. The basic principle is to change the transformer winding effectively 
turns by switching a tap from one to another without interrupting the load current 
OLTC fault can be divided into mechanical fault and electrical fault [3-6]. Mechanical fault refers to 
the fault caused by the failure of the mechanical function of the tap switch, while electrical fault refers 
to the fault of the electrical performance caused by the deterioration of the electrical components or 
mechanical failure. The electrical fault reflects the fault source under the combined action of force, 
electricity and magnetism, and is mainly caused by the contact resistance increasing, contact 
overheating and so on [7]. The mechanical fault is the main fault of the on load tap changer, and the 
bad contact is often caused by the failure of the operating mechanism and the failure of the switch. 
Therefore, it is of great significance and good application prospect for the safe operation of the power 
system to monitor the mechanical performance, and to recognition the possibility fault of the on load 
tap changer [8].The test data is provided by the offline AC test device developed by Electric Power 
Research Institute of Jilin Province. 
BP neural network is a multilayer feedforward neural network. The topology of 3-layer BP network is 
showed in Fig. 1, including input layer, output layer and a hidden layer. The neurons are connected to 
all neurons in the next layer, while neurons of the same layer have no connections. The basic principle 
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of BP neural network is to use gradient descent method to adjust the weights and threshold to 
minimize the mean square error of the actual output value of the network and the desired output value 
[9-11]. The traditional BP algorithm does not consider the gradient direction of the previous time in 
the correction of the weights, making the learning process oscillation and slow convergence. Thus, an 
improved BP learning algorithm is adopted in this paper by introducing a momentum term to solve 
the defects of traditional learning algorithm. 

 

Fig. 1 Topology of 3-layer BP neural network 

2 Improved BP neural network  

The objective function of BP neural network is defined as: 
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where p
ko  is the output of node k  under the effect of sample p , while p

ky  is the target value, m  is 
the dimension of output vector, N  is the number of training samples. 
Training process of BP neural network is to minimize its objective function, and includes the 
following steps: 
(1) Initialization  
Set the node number of input layer n , node number of hidden layer l  and output layer m . Set the 
connection weights between input layer and hidden layer ij , and the connection weights between 

hidden layer and output layer jk . Set the thresholds of hidden layer  1 2, , la a a a   and the 

thresholds of output layer  1 2, , mb b b b  . 

(2) Calculation of hidden layer output jh  
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(3) Calculation of output layer output ko  
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(4) Update weights 
         1 1 1 , 1, 2,...,ij ijt t D t D t t n             (4) 

         1 11 1 1 , 1, 2,...,jk jkt t D t D t t n             (5) 

where   is the learning rate, and 0  ,    tijD t J     and    1 tjkD t J    ,   is the 

momentum factor and 0 1  . 
(5) Update thresholds 
Update ja  and kb  by the error of output ko  and target output ky : 
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